
Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 1 of 16 © Fujitsu July

2025

Abstract

The rapid expansion of AI capabilities has driven enterprises and tech companies to invest heavily in GPU
infrastructure. Despite these investments, GPU underutilization remains a significant challenge, with over 75%
of organizations operating below optimal utilization levels. This inefficiency not only inflates infrastructure
costs but also hampers AI development and innovation.

The AI computing broker (ACB) emerges as a pivotal solution to these challenges, offering dynamic GPU
allocation, full memory access, and advanced scheduling algorithms. By monitoring AI workloads in real-time,
ACB optimizes resource allocation, reduces idle time, and enhances throughput. This white paper provides
technical leaders with an in-depth understanding of ACB's architecture, deployment strategies, and practical
applications, demonstrating how ACB can transform AI infrastructure efficiency and drive competitive
advantage.

1 Fujitsu Technology Strategy Unit
2 Fujitsu Research Computing Laboratory
Correspondence:* matthias.loipersberger@fujitsu.com §nagasaka.yusuke@fujitsu.com

AI Computing Broker:
Optimizing AI Computing Efficiency

Authors: Matthias Loipersberger1*, Shinichi Awamoto2, Godai Takashina2 and Yusuke Nagasaka2§

mailto:matthias.loipersberger@fujitsu.com
mailto:nagasaka.yusuke@fujitsu.com

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 2 of 16 © Fujitsu July

2025

Contents

1. Introduction... 3

2. The Root Causes of GPU Underutilization ... 3

3. AI Computing Broker Solution Introduction .. 4

4. Usage Guidelines .. 5

4.1 Best Practices for Maximizing ACB Impact ... 5

4.2 Choosing the Right Scheduler: ... 6

5. AI Computing Broker Technical Architecture... 7

6. AI Computing Broker in Action: Real-World Use Cases .. 8

6.1 Use Case 1: Maximizing AlphaFold2 Throughput with ACB ... 8

6.2 Use Case 2: Hosting Multiple LLMs on Shared Infrastructure with ACB ... 9

6.3 Additional Verified Deployments .. 9

7. Implementation Strategy ..10

7.1 Deploying ACB with Docker .. 10

7.2 Slurm Integration .. 10

7.3 Kubernetes Integration (Coming Soon) ... 11

Summary ..11

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 3 of 16 © Fujitsu July

2025

1. Introduction
Enterprises and tech companies are making historic investments in GPU infrastructure to support rapid AI
expansion. The hyperscalers are projected to spend combined over $300B on AI infrastructure in 2025,
signaling a tectonic shift in corporate resource allocation toward compute-heavy systems. Furthermore, power
consumption of large-scale AI infrastructure is projected to reach 10% of world electricity by 2030. Such
investment underscores the transition from experimental AI to mission-critical production workloads,
reflecting the strategic importance of high-performance computing.

Despite the massive scale of GPU investments, enterprises continue to struggle with underutilization; thus,
directly eroding ROI. The State of AI Infrastructure at Scale 2024 report found that over 75% of organizations
operate below 70% GPU utilization even during peak times. This inefficiency leads to bloated
infrastructure spending, bottlenecks in model development, and constrained capacity to experiment with next-
generation AI workloads. To remain competitive and extract full value from their AI investments, enterprises
must urgently close the GPU utilization gap. Several factors contribute to suboptimal GPU utilization, including
static job allocation, heterogeneous compute profiles, and inefficient scheduling. Static allocation ties up GPUs
for the entire job duration, leading to significant idle time during CPU-intensive phases.

The AI computing broker (ACB) addresses these challenges through runtime-aware GPU allocation, full
memory access, and advanced scheduling algorithms. It monitors framework-level activity to allocate GPUs
dynamically, applies techniques like backfill to maximize throughput, and ensures active jobs receive the
memory they need. These capabilities lead to higher GPU utilization, lower infrastructure costs, and faster AI
development.

This white paper provides technical leaders with a clear overview of ACB—offering a look under the hood
at its architecture, typical deployment patterns, and practical use cases. It explains how ACB integrates into
common AI stacks and how it can be used to run more workloads with fewer GPUs. It is structured as follows:

• Section 2 explores the root causes of GPU inefficiencies in contemporary AI workloads.
• Section 3 introduces the AI computing broker, detailing its core components and technical design.
• Section 4 outlines best practices to ensure successful implementation.
• Section 5 describes the system architecture behind ACB.
• Section 6 presents technical use cases: Running AlphaFold2 with heterogeneous compute profiles.

Hosting multiple LLMs concurrently using ACB in conjunction with vLLM.
• Section 7 demonstrates how ACB integrates into existing MLOps pipelines using Docker, Slurm, and

Kubernetes.

2. The Root Causes of GPU Underutilization
GPU underutilization stems from static allocation, scheduling inefficiencies, and organizational friction. AI
pipelines often alternate between GPU-intensive and CPU-bound phases, yet traditional schedulers reserve full
GPUs for the entire job, leaving hardware idle during low-demand stages; this scenario is depicted in Figure
1 (a). Many pipelines are heterogeneous (see section use cases), making fixed allocation models ineffective.
According to The State of AI Infrastructure at Scale 2024, 74% of enterprises are dissatisfied with current
scheduling tools, and only 19% have visibility into job queues. Another related issue is GPU memory
partitioning when attempting to share GPUs. Traditional approaches like GPU virtualization or multi-instance
GPUs split the GPU’s memory among multiple jobs, but this reduces the available memory per job. This limits
the size of models or batches that each job can handle. This means that while virtualization can allow
concurrent usage, each job is constrained by a smaller memory allotment, which can degrade performance or

https://www.reuters.com/info-pages/transcript/aa71465a-a087-11ec-8680-73c03cf16654/3f585882-b431-11ec-b607-27400e0231df/422051e2-41bd-11f0-9f7d-538e21e1c910/
https://go.clear.ml/the-state-of-ai-infrastructure-at-scale-2024?_gl=1*1hzzsnl*_gcl_au*OTMwNzkwMjcuMTc1MTQ4MDEwMQ..
https://go.clear.ml/the-state-of-ai-infrastructure-at-scale-2024?_gl=1*1hzzsnl*_gcl_au*OTMwNzkwMjcuMTc1MTQ4MDEwMQ..

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 4 of 16 © Fujitsu July

2025

even prevent large models from running. These factors leave over 75% of companies operating below 70%
GPU utilization at peak times.

Figure 1: GPU scheduling behavior for two concurrent AI workloads with heterogeneous compute profiles (top and middle row); the bottom row shows
aggregate GPU utilization over time. (a) Without ACB: static GPU allocation leads to underutilization during CPU-bound phases. (b) With ACB: dynamic
reassignment during idle GPU intervals improves overall efficiency.

3. AI Computing Broker Solution Introduction
The ACB delivers efficient GPU sharing for multiple AI applications through a dynamic, temporal sharing
approach. Instead of statically partitioning GPU memory, ACB strategically swaps models between GPU and
CPU memory based on real-time activity, enabling concurrent execution even for large language models (LLMs)
exceeding the capacity of a single GPU. This runtime-aware allocation is managed by two key components: the
GPU Assigner, a central scheduler, and the Adaptive GPU Allocator, a client-side library; the execution of
concurrent AI workloads with ACB is illustrated in Figure 1 (b), for supported environments see Appendix A1 and
for detailed competitive differentiation see Appendix B.

The GPU Assigner orchestrates GPU allocation using intelligent scheduling policies, including a backfilling
mechanism. This allows smaller tasks to utilize available GPU resources even while larger tasks are queued,
maximizing throughput and preventing smaller jobs from being blocked. The Adaptive GPU Allocator offers
both automatic and manual modes. The automatic mode intercepts PyTorch API calls, transparently managing
GPU assignments based on detected activity. The manual mode provides explicit control over allocation and
release. This flexible approach streamlines integration and optimizes resource utilization based on actual
application behavior.

Critically, ACB avoids the overhead and complexity of checkpointing by preserving application state during
model swaps. This simplifies the execution of multiple concurrent experiments or model serving instances. By
dynamically allocating GPUs, efficiently scheduling tasks, and providing flexible control over resource
management, ACB empowers users to maximize GPU utilization, reduce infrastructure costs, and maximize the
throughput of their AI workloads.

ACB Performance Overhead

The ACB system introduces minimal performance overhead in most AI workloads. A key design goal of ACB is
to minimize impact on application performance while enabling efficient GPU sharing. Our measurements show
that the cost of intercepting PyTorch calls, for example, is only ~5% in the context of AlphaFold2.

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 5 of 16 © Fujitsu July

2025

ACB's overhead primarily arises from two sources: data transfer between the host and devices when swapping
models in and out of GPU memory, and communication with the central GPU Assigner via gRPC. The gRPC
communication overhead is negligible. The overhead of hooks depends on model size, but negligible for
considerably large models (see the estimation above for AlphaFold2). While large model transfers over PCIe
can introduce noticeable latency, impacting individual job completion times, this cost is generally outweighed
by the improvements in overall system throughput and GPU utilization that ACB provides. By efficiently
allocating idle GPUs to pending jobs, ACB maximizes resource utilization, leading to more completed jobs in
each period compared to a system without dynamic sharing. This translates to substantial performance gains at
the cluster level, despite the potential increase in individual job latency due to data transfer. This trade-off is
inherent in dynamic GPU sharing and represents a reasonable compromise given the significant benefits in
overall resource efficiency.

4. Usage Guidelines
ACB delivers the highest value in environments with heterogenous GPU workloads and multiple concurrent
jobs. The following best practices ensure optimal performance:

4.1 Best Practices for Maximizing ACB Impact
To get the most value from the ACB, it's important to understand the types of workloads and

configurations where its dynamic GPU scheduling performs best. This section outlines key patterns

including practical tips and guidelines. The key questions are summarized in Infobox 1, for more

details see points A through F.

A. Multi-Phase Workloads with Mixed CPU/GPU Profiles

ACB works best with jobs that alternate between GPU activity and meaningful CPU-bound work. This
includes not only inference pipelines like AlphaFold2 but also training workloads with clear pre- and
post-processing stages.

Important: Transferring task context between CPU and GPU memory is slow. To justify this overhead,
CPU phases must be long enough to make the GPU handoff worthwhile.
Recommendation: The job should consist of more than 30% CPU-intensive tasks.
Tip: Use profiling tools (e.g., nsys, nvprof) to verify frequent CPU-only periods of at least several
hundred milliseconds, see Appendix Figure 5 for a profiling screenshot.

B. Run Multiple Jobs to Fill the GPU Pool

ACB thrives when it can choose from multiple jobs waiting to use the GPU. If only one job is running,
idle time can’t be reclaimed.
Tip: Maintain a queue or batch of GPU-capable jobs so ACB always has something to backfill.

C. Group Similar Jobs Together

Infobox 1: Essential Questions for Evaluating ACB Suitability

1. Does your workload involve alternating phases of CPU and GPU tasks?

2. Do you have multiple GPU-capable jobs that can be queued or batched?

3. Is your workload capable of utilizing full GPU memory intermittently?

4. Do you need to host multiple domain-specific LLMs with uneven demand on shared GPU

infrastructure?

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 6 of 16 © Fujitsu July

2025

ACB doesn’t currently support preemption or prioritization, so it’s best to co-schedule jobs with similar
priorities. When jobs are too different, one may block resources or cause delays for others.
Example: Pairing two AlphaFold2 runs is ideal. Mixing a massive LLM job with a lightweight model may
lead to poor balance.

D. Exploit Full GPU Memory

ACB enables full memory access per task rather than fractional assignment via MIG or vGPU. To
capitalize on this, tasks should be capable of requesting full-GPU memory.
Rule of Thumb: Workloads that utilize 80–100% of GPU memory but intermittently release compute
cycles benefit most from ACB’s memory retention and task multiplexing.

E. Avoid Continuously GPU-Bound Jobs

Jobs with very high GPU utilization with no breaks leave no room for ACB to optimize, e.g.
uninterrupted model training or dense inference workloads. The overhead from memory transfer and
scheduling can even hurt performance in these cases.
Guideline: If the job is 90%+ GPU-active with minimal CPU-side work, ACB is not a good fit.

F. Single-Node vs. Multi-Node Deployment Strategies

Single-Node Deployment: Ideal for local testing or pilot workloads. Install the ACB package on a
machine with multiple AI jobs and observe utilization improvements via monitoring tools.
Multi-Node Deployment: Suitable for production environments. ACB coordinates GPU allocation
across nodes via shared scheduler hooks and runtime interceptors. Requires careful setting up of inter-
node communication and persistent storage. See cluster deployment guidelines in the documentation.

4.2 Choosing the Right Scheduler:
ACB offers several scheduling policies optimized for different AI workloads;

Figure 2 illustrates how choosing the right scheduler can help improve GPU efficiency and model
throughput.

Figure 2:
Schematic of backfill scheduling impact on GPU job efficiency. The top timeline
shows standard scheduling without backfill: Jobs 1 (1 GPU), 2 (2 GPUs), and 3 (1
GPU) are queued sequentially, causing idle GPU time. The bottom timeline
shows backfill, where Job 3 is advanced to better utilize available GPUs.

The different algorithms are outlined below:

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 7 of 16 © Fujitsu July

2025

• simple (default): This first-in, first-out (FIFO) scheduler allocates one GPU to each job. Suitable for

most single-GPU, single-node scenarios where jobs don't require GPU sharing.

• gpu-sharing: This scheduler enables spatial sharing of a single GPU among multiple jobs. Beneficial

when individual AI models consume significantly less than half of the GPU memory. This scheduler

maximizes GPU utilization by running multiple smaller models concurrently on the same GPU. Consider

gpu-sharing when memory requirements per model are low but you have numerous models to run.

• gpu-affinity (Multi-GPU Jobs): This scheduler is designed for multi-GPU jobs and prioritizes efficient

utilization. It operates on a FIFO basis but incorporates a "backfill" mechanism to enhance GPU usage.

Backfill allows smaller jobs to "skip the line" and utilize free GPU resources even if larger jobs are

waiting. For instance, if a 2-GPU job is queued but only one GPU is available, a smaller 1-GPU job can be

scheduled to use the remaining GPU, maximizing resource use and potentially reducing overall job

completion time. The scheduler also incorporates a GPU Affinity feature to avoid GPU migration and

thus reduce context switching overhead.

5. AI Computing Broker Technical Architecture
This section outlines the core architecture of the ACB, which is designed with a modular, two-part structure:

• Server-side: A GPU assigner daemon

• Client-side: An ACB client, including a client library and a launcher script (agarun)

The GPU assigner operates as a daemon on GPU servers, tasked with discovering available GPUs and
orchestrating their allocation to client applications. The ACB client integrates directly into your AI application
process, enabling enhanced capabilities through the agarun launcher script. Communication between the ACB
client and GPU assigner is facilitated via gRPC, ensuring efficient and reliable data exchange.

When an application requires GPU resources, it initiates an AllocRequest() gRPC call to the GPU assigner. Upon
completion of GPU usage, the application sends a Release() gRPC call, allowing the assigner to reallocate
resources to other applications. This per-request allocation model supports dynamic and flexible scheduling
without interrupting ongoing processes. The architecture is illustrated in Figure 3.

Figure 3: Architecture of a): the server-side: The GPU assigner daemon manages the GPU pool and allocates resources to applications via gRPC.; b) Client

side: The ACB client intercepts PyTorch calls to monitor and analyze GPU usage patterns.

Multi-node Job Handling

ACB is equipped to handle multi-node jobs, currently limited to torchrun. In a multi-node configuration, GPU
assigner services are deployed on each node, with one node designated as the controller and the others as
executors. The controller node manages requests from all nodes and oversees the entire pool of GPU resources,

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 8 of 16 © Fujitsu July

2025

while executor nodes focus on local GPU status monitoring, such as memory usage. Internal gRPC calls facilitate
the collection of this information by the controller node, ensuring comprehensive resource management across
the network (see Appendix Figure 6 for more information).

Automatic Client Integration

This functionality allows seamless integration of ACB into existing AI applications without code modifications.
By running agarun with the automatic client enabled, ACB PyTorch API hooks are activated, detecting GPU
device usage and communicating with the GPU assigner. The automatic client efficiently manages allocated GPU
devices and computations on them, eliminating the need for manual tensor data movements. After GPU usage
concludes, the client library automatically releases the GPUs, optimizing resource availability and minimizing
idle time. Currently, the automatic client feature is exclusive to PyTorch applications.

Manual API Utilization

For scenarios requiring strict performance optimization, manual incorporation of ACB client API calls into
application code is available. This method bypasses PyTorch API hooks, reducing overhead and enhancing
efficiency. Developers can delineate GPU-utilizing code sections using on_device_begin() and on_device_end()
APIs, allowing precise control over GPU requests and releases, as well as tensor data management.

Framework Support

The ACB client primarily supports the PyTorch framework, offering both manual API usage and automatic
client integration. Basic support for TensorFlow is also provided, albeit without automatic client capabilities.
Note that TensorFlow applications may experience process restarts when utilizing the ACB client. Summarized
below:

Framework Manual Mode Automatic Client

PyTorch Supported Supported

TensorFlow Limited Not Supported

6. AI Computing Broker in Action: Real-World Use Cases
To demonstrate the practical value of the ACB, we highlight two common AI infrastructure bottlenecks: multi-
phase scientific inference and multi-LLM hosting under limited GPU budgets. These examples show how ACB
delivers immediate efficiency gains—with no code changes and minimal integration.

6.1 Use Case 1: Maximizing AlphaFold2 Throughput with ACB
AlphaFold2 transformed structural biology by predicting protein 3D structures from amino acid
sequences, solving a long-standing challenge and earning a Nobel Prize in 2024. However, its pipeline
mixes CPU-heavy stages (e.g., MSA, template search) with GPU-intensive ones (e.g., Evoformer,
Structure Module), resulting in idle GPU time.

Typically, two AlphaFold2 jobs run independently on single NVIDIA A100 GPU, reaching 12
proteins/hour. Due to static allocation, each job holds exclusive GPU access—even during CPU-bound
stages—leading to significant underutilization. Live system metrics confirm low GPU usage despite
reasonable throughput.

Infobox 2: For specialized application domains, developers can create custom client
integrations by leveraging ACB client APIs, ensuring tailored or performance optimization.

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 9 of 16 © Fujitsu July

2025

With ACB, several inference jobs share a single GPU dynamically. ACB monitors runtime activity,
reclaiming idle GPU phases to serve the other jobs (8 in this example). This enables continuous activity
via backfilling—without changing the AlphaFold2 script resulting in 32 proteins/hour.

Impact

• +270% throughput improvement: Achieved by switching from 2×A100 GPUs without ACB to

1×A100 GPU with ACB (8 concurrent jobs).

• Performance gain: Increased processing from 12 proteins/hour to 32 proteins/hour

• No code changes—drop-in deployment

• Lower cost and energy use by consolidating jobs

ACB lets bioinformatics teams run more AlphaFold2 jobs with fewer GPUs. This screening of larger
molecular libraries helps teams make faster, better-informed decisions.

6.2 Use Case 2: Hosting Multiple LLMs on Shared Infrastructure with ACB
Enterprises increasingly deploy multiple domain-specific LLMs. Typically, each model uses a separate
vLLM server pinned to a GPU, keeping weights in memory for fast responses. However, demand across
models is uneven, and static assignment results in idle GPUs and high costs.

In standard setups, models like DeepSeek or Phi-4 are served by individual vLLM servers on dedicated
GPUs. While low latency is ensured, this blocks resource sharing. Idle models occupy full GPUs, while
high-demand ones can’t scale.

ACB resolves this by managing multiple vLLM instances on shared GPUs. Instead of one server per
model, ACB handles execution contexts and memory dynamically. By reclaiming idle memory and
scheduling intelligently, it enables concurrent model serving—without delays or interference.

Beyond the 2-model demo, ACB scaled to over ten LLMs on 8 H100 GPUs. By optimizing memory
fragmentation and dynamically adjusting GPU assignments, it enables dense multi-model serving.

Impact

• Fewer GPUs are needed for more models

• Eliminates model swap delays and cold starts

• Better memory usage and compute saturation

• Smooth inference across various LLMs

Strategic Implications

ACB changes the economics of multi-LLM hosting. For chatbots, multilingual support, or internal
assistants, ACB enables elastic GPU sharing—cutting costs without sacrificing latency or performance.
AI teams can scale horizontally (more models) and vertically (better GPU density).

6.3 Additional Verified Deployments
Beyond these core use cases, ACB has proven itself in trials with AI and cloud providers. Results show
up to 2.25× efficiency improvements and substantial GPU idle time reduction; please refer to the
press release for more details.

Representative Use Cases

• FX Risk Models: Improved training throughput for FX risk models via multiplexed GPU usage.

• Cloud Services: Expanded GPU access in cloud services to meet rising AI demand.

• AI for Retail: Boosted GPU utilization for AI camera systems used in retail.

https://www.fujitsu.com/global/about/resources/news/press-releases/2024/1022-01.html

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 10 of 16 © Fujitsu July

2025

7. Implementation Strategy
This section outlines how to deploy the ACB across a range of environments, from local testing to production-
scale clusters. The goal is to provide technical teams with a clear path to adoption - whether running on a
single machine or across distributed compute infrastructure. For more detailed information see Appendix A2
and A3.

Deployment Modes

ACB supports a flexible set of environments to meet the needs of both research and enterprise teams:

• Bare Metal – Direct installation on Linux servers with supported GPU drivers.

• Docker Containers Pre-configured container images for rapid deployment.

• Job Scheduler Integration – Works with SLURM and other common schedulers to orchestrate AI

workloads in shared environments.

• Kubernetes (Planned) – Future versions will support dynamic scheduling across containerized

clusters. Refer to release notes for status.

Figure 4: Integration of ACB with (a) Docker: ACB uses Docker to isolate and coordinate its GPU Assigner and Allocator for efficient resource use. (b)
Slurm: ACB enhances GPU sharing in Slurm via batch scripts without modifying Slurm itself. (c) Kubernetes: ACB supports fine-grained GPU sharing in
Kubernetes with a dual-scheduler design.

7.1 Deploying ACB with Docker
ACB utilizes Docker to streamline deployment and management of its core components: GPU Assigner
and Adaptive GPU Allocator. Each component runs in separate containers, communicating over a
dedicated Docker network. The GPU Assigner operates as a standalone container, functioning like a
system service, and awaits resource requests from client applications. User AI programs are deployed
in individual containers, where the Adaptive GPU Allocator automatically loads the program and
communicates with the GPU Assigner via the Docker network.

7.2 Slurm Integration
ACB can be deployed within a Slurm-managed cluster for enhanced GPU resource management
without modifying Slurm itself. Users benefit from Slurm's node allocation and ACB's efficient intra-

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 11 of 16 © Fujitsu July

2025

node GPU sharing. Deployment involves adding startup commands for the GPU Assigner and Adaptive
GPU Allocator in Slurm batch scripts. Upon job launch, Slurm allocates nodes, and the batch script
initiates ACB components. The GPU Assigner detects available GPUs on each node, and a configuration
file specifies IP addresses for inter-node GPU management. This setup allows multiple AI applications
to share GPUs within Slurm workloads.

7.3 Kubernetes Integration (Coming Soon)
ACB addresses GPU resource management challenges in Kubernetes by integrating fine-grained GPU
scheduling. The Local Scheduler, deployed as a Daemon Set, ensures presence on nodes with GPUs,
coordinating with ACB’s Global Scheduler for efficient resource distribution. Within each Pod, the ACB
client library interacts with the Local Scheduler to manage GPU resources, allowing temporal sharing
among applications. This integration leverages the NVIDIA GPU Operator for seamless hardware
interaction, enhancing GPU utilization and simplifying management. Note that ACB's "backfill" feature
is unavailable in Kubernetes integration, with jobs scheduled FIFO.

Summary

The ACB represents a transformative approach to addressing the pervasive issue of GPU underutilization in
enterprise AI infrastructure. Despite historic investments in GPU resources, many organizations struggle to
achieve optimal utilization due to static allocation models and inefficient scheduling practices. These
challenges lead to inflated costs and hinder the ability to innovate and scale AI workloads effectively.

ACB tackles these inefficiencies by introducing a dynamic orchestration layer that intelligently allocates GPU
resources based on real-time workload demands. This approach not only maximizes GPU utilization but also
reduces infrastructure costs and accelerates AI development. The white paper illustrates ACB's impact through
detailed use cases, such as enhancing AlphaFold2 throughput and enabling multi-LLM hosting on shared
infrastructure. These examples demonstrate how ACB can deliver substantial performance improvements and
cost savings without necessitating code changes.

ACB's flexible deployment options, including bare metal, Docker, Slurm, and future Kubernetes integration,
cater to diverse operational environments, ensuring seamless adoption and scalability. By implementing ACB,
organizations can unlock the full potential of their GPU infrastructure, driving faster AI development and
improved ROI.

Call to Action

As AI workloads scale and GPU supply remain constrained, underutilized infrastructure has become a
hidden tax on innovation. The ACB turns this inefficiency into a strategic advantage, unlocking higher
throughput, lower cost per model, and faster iteration across AI pipelines.

Now is the time for AI leaders to act: Integrate ACB into your existing stack, benchmark its impact, and
reclaim performance from hardware you already own. Organizations that optimize GPU utilization today
will be the ones scaling AI tomorrow—faster, leaner, and ahead of the curve.

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 12 of 16 © Fujitsu July

2025

Acknowledgement

We would like to thank I-Hsi Kao for providing valuable technical review and insights. We are also grateful to
Ryuji Iwata for his thoughtful support in refining the overall formatting, design, and diagrams.

Appendix A: System Compatibility & Integration Scenarios

To ensure successful deployment of the ACB, this appendix outlines its current system compatibility and
highlights advanced integration scenarios. The ACB middleware is designed to be lightweight and flexible, with
minimal infrastructure overhead and no required changes to model code.

A1 – Supported Environments

Component Compatibility

GPU Drivers NVIDIA CUDA-compatible (v11.x–12.x); tested with CUDA 11.8+ and driver 525+

Operating Systems Ubuntu 20.04 / 22.04

AI Frameworks
PyTorch (2.1.2+): native hooks used to detect GPU usage, TensorFlow (2.15+): limited
support in manual-var mode.

Hardware Support
NVIDIA A100, H100, L40S, A10; supports MIG-enabled and non-MIG GPUs
(MIG support coming soon)

Inference Runtimes Compatible with vLLM,

Containerization Docker supported; no dependency on Kubernetes

Cluster Integration Single node supported; multi-node support limited until Q3/2025

Licensing /
Deployment

Python package; license validation via API

A2: Integration Notes

• Model Transparency: ACB does not require any changes to user models or training scripts if PyTorch

is used as the AI framework. It observes GPU activity through backend runtime instrumentation via

framework profiling APIs.

• Memory Handling: ACB temporarily swaps entire models in and out of GPU memory based on runtime

activity, allowing for oversubscription scenarios where all models combined exceed total memory

available.

• Execution Context: The broker can wrap a model training or inference job and dynamically release the

GPU when idle phases (e.g., CPU preprocessing) are detected. Full memory access is granted during

active GPU use.

A3: Advanced Compatibility Scenarios

Scenario 1: ACB + NVIDIA MIG (Driver-Level Partitioning)

When deployed on MIG-enabled GPUs (e.g., A100 or H100), ACB complements MIG by dynamically assigning
MIG instances to jobs in real time. While MIG creates isolated GPU slices (e.g., 10 GB or 20 GB partitions), ACB

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 13 of 16 © Fujitsu July

2025

ensures these slices are only bound to jobs during their active GPU phases. This allows multiple GPU-bound
jobs to co-exist with minimal memory conflict or underutilization (MIG support coming soon).

Scenario 2: ACB + Triton Inference Server / vLLM (Application Layer)

Inference-serving frameworks like Triton and vLLM typically launch persistent GPU-bound workers. When
integrated with ACB, inference models are loaded on-demand into GPU memory and unloaded post-inference,
enabling high-throughput LLM serving even with limited memory -ideal for bursty or multi-model
deployment scenarios (currently only vLLM support).

Scenario 3: ACB + NVIDIA MIG + vLLM (Full Stack Efficiency)

Combining all three technologies creates a powerful tiered system:

• MIG partitions a single GPU into multiple isolated slices—ideal when models don’t need the full GPU.,

• ACB operates within each MIG slice, dynamically orchestrating multiple LLM models.

• vLLM enables fast, efficient LLM inference.

This architecture supports dense multi-model hosting: small and mid-sized models can share a MIG slice,
improving utilization without contention.

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 14 of 16 © Fujitsu July

2025

Appendix B – Competitive Differentiation: ACB’s True Innovation in GPU Efficiency

We assessed Fujitsu’s ACB against three leading platforms—Run:ai, Exostellar.ai, and Slurm—to validate the
comparative feature matrix and highlight where ACB stands out.

Feature Verification Table

Feature ACB Run:ai Exostellar.ai Slurm

Runtime-Aware
Scheduling

Yes
No: schedules at
container/job
granularity time slicing

No: monitors and
dynamically adjust
resource allocations

No: static allocation per job,
no intra-job rescheduling

Memory
Partitioning

Yes – gives full
GPU memory at
each active phase

Yes – fractions and
automated MIG
partitions

Yes – Software-Defined
GPU virtualization

Yes – via MIG and software
“sharding”

Memory
Oversubscription

Yes – via time-
based trading of
full GPU memory

No – avoids memory
oversubscription per
GPU for safety

Yes – supports safe
over-commit with
virtual devices

No – not supported; shards
are static, MIG is partitioned

Cluster-Level
Orchestration

Planned;
Yes – full Kubernetes
integration

Partial – integrations
via K8s; includes
migration and scaling

Yes – platform in HPC
clusters; well-defined queue
and scheduling

Plug-and-Play
Integration

Lightweight –
middleware, no
code changes

Moderate – requires
K8s + Run:ai
deployment

Moderate – system-
level driver/intel install
on each node

Heavy – full HPC scheduler
setup

Key Differentiator
Task-level GPU
capture

Dynamic GPU fraction

and resource quota

management.

Software GPU
virtualization +
oversubscription
commit

Batch scheduling with high
reliability & scale

Competitive Highlights

ACB

• Dynamically assigns full GPU memory and compute only when a task enters GPU phases (e.g.,

forward/backpropagation), identified by runtime behavior. It minimizes hardware contention

throughout a job’s lifetime.

• Enables memory oversubscription by treating GPU memory as fully reusable across tasks—users

demonstrated handling 150 GB of AI processing on 40 GB GPUs via time-based swapping.

Run:ai

• GPU fraction and Dynamic MIG feature dynamically divide GPU memory at the time when a job is
submitted.

• Offers sophisticated resource quota allocation based on Projects and Departments, allowing fair
scheduling and temporal over-quota.

• Focusing on Kubernetes cluster environment and offering tight integration with it.
• It does not handle memory oversubscription -- it does not allow concurrently running two jobs each

demanding entire GPU memory (see here).

https://run-ai-docs.nvidia.com/saas/platform-management/runai-scheduler/scheduling/concepts-and-principles?utm_source=chatgpt.com

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 15 of 16 © Fujitsu July

2025

Exostellar.ai

• Employs Software-Defined GPU (SDG) virtualization: tasks get isolated virtual GPUs with configurable

memory/compute.

• Allows safe memory oversubscription using paging and virtual memory swapping when tasks don’t

simultaneously use peak resources.

• Monitors and dynamically adjusts resource use via telemetry; includes Kubernetes integration and

clustering tools for migration and autoscaling (see here).

Slurm

• The de facto HPC scheduler, offering stable, policy-driven job queueing and MIG/shard support for

partitioned GPU use.

• Introduced software GPU sharding (v22.05), allowing fractional job allocation—but without

memory fencing; users must ensure safe co-scheduling.

• Lacks runtime GPU reallocation; jobs keep GPU allocation throughout their lifespan.

https://www.exostellar.ai/blog

Fujitsu ACB Technical White Paper

FUJITSU-PUBLIC 16 of 16 © Fujitsu July

2025

Appendix C: Additional Information

Figure 5: Top: Two GPUs running Alphafold2 without ACB; bottom: a single GPU running the same two Alphafold2 jobs on a single GPU. Left side: GPU
activity, right side: output of the Alphafold2 inference.

Figure 6: Architecture of the ACB multi-server set up: The main GPU assigner is located at the control node and interacts with GPU monitoring agents on
each executor node to control the global GPU resource pool.

© Fujitsu 2025. All rights reserved. Fujitsu and Fujitsu logo are trademarks of Fujitsu Limited registered in many jurisdictions worldwide. Other product,
service and company names mentioned herein may be trademarks of Fujitsu or other companies. This document is current as of the initial date of
publication and subject to be changed by Fujitsu without notice. This material is provided for information purposes only and Fujitsu assumes no liability
related to its use.

