
Fujitsu ACB Technical White Paper 

FUJITSU-PUBLIC                                                                1 of 16   © Fujitsu July 

2025 

 

Abstract 

The rapid expansion of AI capabilities has driven enterprises and tech companies to invest heavily in GPU 
infrastructure. Despite these investments, GPU underutilization remains a significant challenge, with over 75% 
of organizations operating below optimal utilization levels. This inefficiency not only inflates infrastructure 
costs but also hampers AI development and innovation. 

The AI computing broker (ACB) emerges as a pivotal solution to these challenges, offering dynamic GPU 
allocation, full memory access, and advanced scheduling algorithms. By monitoring AI workloads in real-time, 
ACB optimizes resource allocation, reduces idle time, and enhances throughput. This white paper provides 
technical leaders with an in-depth understanding of ACB's architecture, deployment strategies, and practical 
applications, demonstrating how ACB can transform AI infrastructure efficiency and drive competitive 
advantage. 
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1. Introduction 
Enterprises and tech companies are making historic investments in GPU infrastructure to support rapid AI 
expansion. The hyperscalers are projected to spend combined over $300B on AI infrastructure in 2025, 
signaling a tectonic shift in corporate resource allocation toward compute-heavy systems. Furthermore, power 
consumption of large-scale AI infrastructure is projected to reach 10% of world electricity by 2030. Such 
investment underscores the transition from experimental AI to mission-critical production workloads, 
reflecting the strategic importance of high-performance computing. 

Despite the massive scale of GPU investments, enterprises continue to struggle with underutilization; thus, 
directly eroding ROI. The State of AI Infrastructure at Scale 2024 report found that over 75% of organizations 
operate below 70% GPU utilization even during peak times. This inefficiency leads to bloated 
infrastructure spending, bottlenecks in model development, and constrained capacity to experiment with next-
generation AI workloads. To remain competitive and extract full value from their AI investments, enterprises 
must urgently close the GPU utilization gap. Several factors contribute to suboptimal GPU utilization, including 
static job allocation, heterogeneous compute profiles, and inefficient scheduling. Static allocation ties up GPUs 
for the entire job duration, leading to significant idle time during CPU-intensive phases. 

The AI computing broker (ACB) addresses these challenges through runtime-aware GPU allocation, full 
memory access, and advanced scheduling algorithms. It monitors framework-level activity to allocate GPUs 
dynamically, applies techniques like backfill to maximize throughput, and ensures active jobs receive the 
memory they need. These capabilities lead to higher GPU utilization, lower infrastructure costs, and faster AI 
development. 

This white paper provides technical leaders with a clear overview of ACB—offering a look under the hood 
at its architecture, typical deployment patterns, and practical use cases. It explains how ACB integrates into 
common AI stacks and how it can be used to run more workloads with fewer GPUs. It is structured as follows:  

• Section 2 explores the root causes of GPU inefficiencies in contemporary AI workloads.  
• Section 3 introduces the AI computing broker, detailing its core components and technical design.  
• Section 4 outlines best practices to ensure successful implementation.  
• Section 5 describes the system architecture behind ACB. 
• Section 6 presents technical use cases: Running AlphaFold2 with heterogeneous compute profiles. 

Hosting multiple LLMs concurrently using ACB in conjunction with vLLM.  
• Section 7 demonstrates how ACB integrates into existing MLOps pipelines using Docker, Slurm, and 

Kubernetes. 
 

2. The Root Causes of GPU Underutilization 
GPU underutilization stems from static allocation, scheduling inefficiencies, and organizational friction. AI 
pipelines often alternate between GPU-intensive and CPU-bound phases, yet traditional schedulers reserve full 
GPUs for the entire job, leaving hardware idle during low-demand stages; this scenario is depicted in Figure 
1 (a). Many pipelines are heterogeneous (see section use cases), making fixed allocation models ineffective. 
According to The State of AI Infrastructure at Scale 2024, 74% of enterprises are dissatisfied with current 
scheduling tools, and only 19% have visibility into job queues. Another related issue is GPU memory 
partitioning when attempting to share GPUs. Traditional approaches like GPU virtualization or multi-instance 
GPUs split the GPU’s memory among multiple jobs, but this reduces the available memory per job. This limits 
the size of models or batches that each job can handle. This means that while virtualization can allow 
concurrent usage, each job is constrained by a smaller memory allotment, which can degrade performance or 

https://www.reuters.com/info-pages/transcript/aa71465a-a087-11ec-8680-73c03cf16654/3f585882-b431-11ec-b607-27400e0231df/422051e2-41bd-11f0-9f7d-538e21e1c910/
https://go.clear.ml/the-state-of-ai-infrastructure-at-scale-2024?_gl=1*1hzzsnl*_gcl_au*OTMwNzkwMjcuMTc1MTQ4MDEwMQ..
https://go.clear.ml/the-state-of-ai-infrastructure-at-scale-2024?_gl=1*1hzzsnl*_gcl_au*OTMwNzkwMjcuMTc1MTQ4MDEwMQ..
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even prevent large models from running. These factors leave over 75% of companies operating below 70% 
GPU utilization at peak times.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: GPU scheduling behavior for two concurrent AI workloads with heterogeneous compute profiles (top and middle row); the bottom row shows 
aggregate GPU utilization over time. (a) Without ACB: static GPU allocation leads to underutilization during CPU-bound phases. (b) With ACB: dynamic 
reassignment during idle GPU intervals improves overall efficiency. 

 

3. AI Computing Broker Solution Introduction 
The ACB delivers efficient GPU sharing for multiple AI applications through a dynamic, temporal sharing 
approach. Instead of statically partitioning GPU memory, ACB strategically swaps models between GPU and 
CPU memory based on real-time activity, enabling concurrent execution even for large language models (LLMs) 
exceeding the capacity of a single GPU. This runtime-aware allocation is managed by two key components: the 
GPU Assigner, a central scheduler, and the Adaptive GPU Allocator, a client-side library; the execution of 
concurrent AI workloads with ACB is illustrated in Figure 1 (b), for supported environments see Appendix A1 and 
for detailed competitive differentiation see Appendix B. 

The GPU Assigner orchestrates GPU allocation using intelligent scheduling policies, including a backfilling 
mechanism. This allows smaller tasks to utilize available GPU resources even while larger tasks are queued, 
maximizing throughput and preventing smaller jobs from being blocked. The Adaptive GPU Allocator offers 
both automatic and manual modes. The automatic mode intercepts PyTorch API calls, transparently managing 
GPU assignments based on detected activity. The manual mode provides explicit control over allocation and 
release. This flexible approach streamlines integration and optimizes resource utilization based on actual 
application behavior. 

Critically, ACB avoids the overhead and complexity of checkpointing by preserving application state during 
model swaps. This simplifies the execution of multiple concurrent experiments or model serving instances. By 
dynamically allocating GPUs, efficiently scheduling tasks, and providing flexible control over resource 
management, ACB empowers users to maximize GPU utilization, reduce infrastructure costs, and maximize the 
throughput of their AI workloads. 

ACB Performance Overhead 

The ACB system introduces minimal performance overhead in most AI workloads. A key design goal of ACB is 
to minimize impact on application performance while enabling efficient GPU sharing. Our measurements show 
that the cost of intercepting PyTorch calls, for example, is only ~5% in the context of AlphaFold2. 
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ACB's overhead primarily arises from two sources: data transfer between the host and devices when swapping 
models in and out of GPU memory, and communication with the central GPU Assigner via gRPC. The gRPC 
communication overhead is negligible. The overhead of hooks depends on model size, but negligible for 
considerably large models (see the estimation above for AlphaFold2). While large model transfers over PCIe 
can introduce noticeable latency, impacting individual job completion times, this cost is generally outweighed 
by the improvements in overall system throughput and GPU utilization that ACB provides. By efficiently 
allocating idle GPUs to pending jobs, ACB maximizes resource utilization, leading to more completed jobs in 
each period compared to a system without dynamic sharing. This translates to substantial performance gains at 
the cluster level, despite the potential increase in individual job latency due to data transfer. This trade-off is 
inherent in dynamic GPU sharing and represents a reasonable compromise given the significant benefits in 
overall resource efficiency. 

4. Usage Guidelines 
ACB delivers the highest value in environments with heterogenous GPU workloads and multiple concurrent 
jobs. The following best practices ensure optimal performance: 

4.1  Best Practices for Maximizing ACB Impact 
To get the most value from the ACB, it's important to understand the types of workloads and 

configurations where its dynamic GPU scheduling performs best. This section outlines key patterns 

including practical tips and guidelines. The key questions are summarized in Infobox 1, for more 

details see points A through F. 

 

 

 

 

 

 

 

A. Multi-Phase Workloads with Mixed CPU/GPU Profiles 

ACB works best with jobs that alternate between GPU activity and meaningful CPU-bound work. This 
includes not only inference pipelines like AlphaFold2 but also training workloads with clear pre- and 
post-processing stages. 

Important: Transferring task context between CPU and GPU memory is slow. To justify this overhead, 
CPU phases must be long enough to make the GPU handoff worthwhile.  
Recommendation: The job should consist of more than 30% CPU-intensive tasks. 
Tip: Use profiling tools (e.g., nsys, nvprof) to verify frequent CPU-only periods of at least several 
hundred milliseconds, see Appendix Figure 5 for a profiling screenshot. 

B. Run Multiple Jobs to Fill the GPU Pool 

ACB thrives when it can choose from multiple jobs waiting to use the GPU. If only one job is running, 
idle time can’t be reclaimed. 
Tip: Maintain a queue or batch of GPU-capable jobs so ACB always has something to backfill. 

C. Group Similar Jobs Together 

Infobox 1: Essential Questions for Evaluating ACB Suitability 

1. Does your workload involve alternating phases of CPU and GPU tasks? 

2. Do you have multiple GPU-capable jobs that can be queued or batched? 

3. Is your workload capable of utilizing full GPU memory intermittently? 

4. Do you need to host multiple domain-specific LLMs with uneven demand on shared GPU 

infrastructure? 
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ACB doesn’t currently support preemption or prioritization, so it’s best to co-schedule jobs with similar 
priorities. When jobs are too different, one may block resources or cause delays for others. 
Example: Pairing two AlphaFold2 runs is ideal. Mixing a massive LLM job with a lightweight model may 
lead to poor balance. 

D. Exploit Full GPU Memory 

ACB enables full memory access per task rather than fractional assignment via MIG or vGPU. To 
capitalize on this, tasks should be capable of requesting full-GPU memory. 
Rule of Thumb: Workloads that utilize 80–100% of GPU memory but intermittently release compute 
cycles benefit most from ACB’s memory retention and task multiplexing. 

E. Avoid Continuously GPU-Bound Jobs 

Jobs with very high GPU utilization with no breaks leave no room for ACB to optimize, e.g. 
uninterrupted model training or dense inference workloads. The overhead from memory transfer and 
scheduling can even hurt performance in these cases. 
Guideline: If the job is 90%+ GPU-active with minimal CPU-side work, ACB is not a good fit. 

F. Single-Node vs. Multi-Node Deployment Strategies 

Single-Node Deployment: Ideal for local testing or pilot workloads. Install the ACB package on a 
machine with multiple AI jobs and observe utilization improvements via monitoring tools. 
Multi-Node Deployment: Suitable for production environments. ACB coordinates GPU allocation 
across nodes via shared scheduler hooks and runtime interceptors. Requires careful setting up of inter-
node communication and persistent storage. See cluster deployment guidelines in the documentation. 

4.2  Choosing the Right Scheduler:  
ACB offers several scheduling policies optimized for different AI workloads;  

 
Figure 2 illustrates how choosing the right scheduler can help improve GPU efficiency and model 
throughput.  

 
Figure 2:  
Schematic of backfill scheduling impact on GPU job efficiency. The top timeline 
shows standard scheduling without backfill: Jobs 1 (1 GPU), 2 (2 GPUs), and 3 (1 
GPU) are queued sequentially, causing idle GPU time. The bottom timeline 
shows backfill, where Job 3 is advanced to better utilize available GPUs. 

 

 

 

 

 

 

 

 

 

 

 

The different algorithms are outlined below: 
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• simple (default): This first-in, first-out (FIFO) scheduler allocates one GPU to each job. Suitable for 

most single-GPU, single-node scenarios where jobs don't require GPU sharing. 

• gpu-sharing: This scheduler enables spatial sharing of a single GPU among multiple jobs. Beneficial 

when individual AI models consume significantly less than half of the GPU memory. This scheduler 

maximizes GPU utilization by running multiple smaller models concurrently on the same GPU. Consider 

gpu-sharing when memory requirements per model are low but you have numerous models to run. 

• gpu-affinity (Multi-GPU Jobs): This scheduler is designed for multi-GPU jobs and prioritizes efficient 

utilization. It operates on a FIFO basis but incorporates a "backfill" mechanism to enhance GPU usage. 

Backfill allows smaller jobs to "skip the line" and utilize free GPU resources even if larger jobs are 

waiting. For instance, if a 2-GPU job is queued but only one GPU is available, a smaller 1-GPU job can be 

scheduled to use the remaining GPU, maximizing resource use and potentially reducing overall job 

completion time. The scheduler also incorporates a GPU Affinity feature to avoid GPU migration and 

thus reduce context switching overhead.  

5. AI Computing Broker Technical Architecture 
This section outlines the core architecture of the ACB, which is designed with a modular, two-part structure:  

• Server-side: A GPU assigner daemon 

• Client-side: An ACB client, including a client library and a launcher script (agarun) 

The GPU assigner operates as a daemon on GPU servers, tasked with discovering available GPUs and 
orchestrating their allocation to client applications. The ACB client integrates directly into your AI application 
process, enabling enhanced capabilities through the agarun launcher script. Communication between the ACB 
client and GPU assigner is facilitated via gRPC, ensuring efficient and reliable data exchange. 

When an application requires GPU resources, it initiates an AllocRequest() gRPC call to the GPU assigner. Upon 
completion of GPU usage, the application sends a Release() gRPC call, allowing the assigner to reallocate 
resources to other applications. This per-request allocation model supports dynamic and flexible scheduling 
without interrupting ongoing processes. The architecture is illustrated in Figure 3. 

 

Figure 3: Architecture of a): the server-side: The GPU assigner daemon manages the GPU pool and allocates resources to applications via gRPC.; b) Client 

side: The ACB client intercepts PyTorch calls to monitor and analyze GPU usage patterns. 

 

Multi-node Job Handling 

ACB is equipped to handle multi-node jobs, currently limited to torchrun. In a multi-node configuration, GPU 
assigner services are deployed on each node, with one node designated as the controller and the others as 
executors. The controller node manages requests from all nodes and oversees the entire pool of GPU resources, 
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while executor nodes focus on local GPU status monitoring, such as memory usage. Internal gRPC calls facilitate 
the collection of this information by the controller node, ensuring comprehensive resource management across 
the network (see Appendix Figure 6 for more information). 

Automatic Client Integration 

This functionality allows seamless integration of ACB into existing AI applications without code modifications. 
By running agarun with the automatic client enabled, ACB PyTorch API hooks are activated, detecting GPU 
device usage and communicating with the GPU assigner. The automatic client efficiently manages allocated GPU 
devices and computations on them, eliminating the need for manual tensor data movements. After GPU usage 
concludes, the client library automatically releases the GPUs, optimizing resource availability and minimizing 
idle time. Currently, the automatic client feature is exclusive to PyTorch applications. 

Manual API Utilization 

For scenarios requiring strict performance optimization, manual incorporation of ACB client API calls into 
application code is available. This method bypasses PyTorch API hooks, reducing overhead and enhancing 
efficiency. Developers can delineate GPU-utilizing code sections using on_device_begin() and on_device_end() 
APIs, allowing precise control over GPU requests and releases, as well as tensor data management. 

Framework Support 

The ACB client primarily supports the PyTorch framework, offering both manual API usage and automatic 
client integration. Basic support for TensorFlow is also provided, albeit without automatic client capabilities. 
Note that TensorFlow applications may experience process restarts when utilizing the ACB client. Summarized 
below: 

Framework Manual Mode Automatic Client 

PyTorch Supported Supported 

TensorFlow Limited Not Supported 

 

 

 

6. AI Computing Broker in Action: Real-World Use Cases 
To demonstrate the practical value of the ACB, we highlight two common AI infrastructure bottlenecks: multi-
phase scientific inference and multi-LLM hosting under limited GPU budgets. These examples show how ACB 
delivers immediate efficiency gains—with no code changes and minimal integration. 

6.1  Use Case 1: Maximizing AlphaFold2 Throughput with ACB 
AlphaFold2 transformed structural biology by predicting protein 3D structures from amino acid 
sequences, solving a long-standing challenge and earning a Nobel Prize in 2024. However, its pipeline 
mixes CPU-heavy stages (e.g., MSA, template search) with GPU-intensive ones (e.g., Evoformer, 
Structure Module), resulting in idle GPU time. 

Typically, two AlphaFold2 jobs run independently on single NVIDIA A100 GPU, reaching 12 
proteins/hour. Due to static allocation, each job holds exclusive GPU access—even during CPU-bound 
stages—leading to significant underutilization. Live system metrics confirm low GPU usage despite 
reasonable throughput. 

Infobox 2: For specialized application domains, developers can create custom client 
integrations by leveraging ACB client APIs, ensuring tailored or performance optimization. 
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With ACB, several inference jobs share a single GPU dynamically. ACB monitors runtime activity, 
reclaiming idle GPU phases to serve the other jobs (8 in this example). This enables continuous activity 
via backfilling—without changing the AlphaFold2 script resulting in 32 proteins/hour. 

Impact 

• +270% throughput improvement: Achieved by switching from 2×A100 GPUs without ACB to 

1×A100 GPU with ACB (8 concurrent jobs). 

• Performance gain: Increased processing from 12 proteins/hour to 32 proteins/hour  

• No code changes—drop-in deployment 

• Lower cost and energy use by consolidating jobs 

ACB lets bioinformatics teams run more AlphaFold2 jobs with fewer GPUs. This screening of larger 
molecular libraries helps teams make faster, better-informed decisions. 

 

6.2  Use Case 2: Hosting Multiple LLMs on Shared Infrastructure with ACB 
Enterprises increasingly deploy multiple domain-specific LLMs. Typically, each model uses a separate 
vLLM server pinned to a GPU, keeping weights in memory for fast responses. However, demand across 
models is uneven, and static assignment results in idle GPUs and high costs. 

In standard setups, models like DeepSeek or Phi-4 are served by individual vLLM servers on dedicated 
GPUs. While low latency is ensured, this blocks resource sharing. Idle models occupy full GPUs, while 
high-demand ones can’t scale. 

ACB resolves this by managing multiple vLLM instances on shared GPUs. Instead of one server per 
model, ACB handles execution contexts and memory dynamically. By reclaiming idle memory and 
scheduling intelligently, it enables concurrent model serving—without delays or interference. 

Beyond the 2-model demo, ACB scaled to over ten LLMs on 8 H100 GPUs. By optimizing memory 
fragmentation and dynamically adjusting GPU assignments, it enables dense multi-model serving. 

Impact 

• Fewer GPUs are needed for more models 

• Eliminates model swap delays and cold starts 

• Better memory usage and compute saturation 

• Smooth inference across various LLMs 

Strategic Implications 

ACB changes the economics of multi-LLM hosting. For chatbots, multilingual support, or internal 
assistants, ACB enables elastic GPU sharing—cutting costs without sacrificing latency or performance. 
AI teams can scale horizontally (more models) and vertically (better GPU density). 

6.3  Additional Verified Deployments 
Beyond these core use cases, ACB has proven itself in trials with AI and cloud providers. Results show 
up to 2.25× efficiency improvements and substantial GPU idle time reduction;  please refer to the 
press release for more details. 

Representative Use Cases 

• FX Risk Models: Improved training throughput for FX risk models via multiplexed GPU usage. 

• Cloud Services: Expanded GPU access in cloud services to meet rising AI demand. 

• AI for Retail: Boosted GPU utilization for AI camera systems used in retail. 

https://www.fujitsu.com/global/about/resources/news/press-releases/2024/1022-01.html
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7. Implementation Strategy 
This section outlines how to deploy the ACB across a range of environments, from local testing to production-
scale clusters. The goal is to provide technical teams with a clear path to adoption - whether running on a 
single machine or across distributed compute infrastructure. For more detailed information see Appendix A2 
and A3. 

 

Deployment Modes 

ACB supports a flexible set of environments to meet the needs of both research and enterprise teams: 

• Bare Metal – Direct installation on Linux servers with supported GPU drivers. 

• Docker Containers Pre-configured container images for rapid deployment. 

• Job Scheduler Integration – Works with SLURM and other common schedulers to orchestrate AI 

workloads in shared environments. 

• Kubernetes (Planned) – Future versions will support dynamic scheduling across containerized 

clusters. Refer to release notes for status. 

 

Figure 4: Integration of ACB with (a) Docker: ACB uses Docker to isolate and coordinate its GPU Assigner and Allocator for efficient resource use. (b) 
Slurm: ACB enhances GPU sharing in Slurm via batch scripts without modifying Slurm itself. (c) Kubernetes: ACB supports fine-grained GPU sharing in 
Kubernetes with a dual-scheduler design. 

 

7.1  Deploying ACB with Docker 
ACB utilizes Docker to streamline deployment and management of its core components: GPU Assigner 
and Adaptive GPU Allocator. Each component runs in separate containers, communicating over a 
dedicated Docker network. The GPU Assigner operates as a standalone container, functioning like a 
system service, and awaits resource requests from client applications. User AI programs are deployed 
in individual containers, where the Adaptive GPU Allocator automatically loads the program and 
communicates with the GPU Assigner via the Docker network.  

7.2  Slurm Integration 
ACB can be deployed within a Slurm-managed cluster for enhanced GPU resource management 
without modifying Slurm itself. Users benefit from Slurm's node allocation and ACB's efficient intra-
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node GPU sharing. Deployment involves adding startup commands for the GPU Assigner and Adaptive 
GPU Allocator in Slurm batch scripts. Upon job launch, Slurm allocates nodes, and the batch script 
initiates ACB components. The GPU Assigner detects available GPUs on each node, and a configuration 
file specifies IP addresses for inter-node GPU management. This setup allows multiple AI applications 
to share GPUs within Slurm workloads. 

7.3  Kubernetes Integration (Coming Soon) 
ACB addresses GPU resource management challenges in Kubernetes by integrating fine-grained GPU 
scheduling. The Local Scheduler, deployed as a Daemon Set, ensures presence on nodes with GPUs, 
coordinating with ACB’s Global Scheduler for efficient resource distribution. Within each Pod, the ACB 
client library interacts with the Local Scheduler to manage GPU resources, allowing temporal sharing 
among applications. This integration leverages the NVIDIA GPU Operator for seamless hardware 
interaction, enhancing GPU utilization and simplifying management. Note that ACB's "backfill" feature 
is unavailable in Kubernetes integration, with jobs scheduled FIFO. 

Summary 

The ACB represents a transformative approach to addressing the pervasive issue of GPU underutilization in 
enterprise AI infrastructure. Despite historic investments in GPU resources, many organizations struggle to 
achieve optimal utilization due to static allocation models and inefficient scheduling practices. These 
challenges lead to inflated costs and hinder the ability to innovate and scale AI workloads effectively. 

ACB tackles these inefficiencies by introducing a dynamic orchestration layer that intelligently allocates GPU 
resources based on real-time workload demands. This approach not only maximizes GPU utilization but also 
reduces infrastructure costs and accelerates AI development. The white paper illustrates ACB's impact through 
detailed use cases, such as enhancing AlphaFold2 throughput and enabling multi-LLM hosting on shared 
infrastructure. These examples demonstrate how ACB can deliver substantial performance improvements and 
cost savings without necessitating code changes. 

ACB's flexible deployment options, including bare metal, Docker, Slurm, and future Kubernetes integration, 
cater to diverse operational environments, ensuring seamless adoption and scalability. By implementing ACB, 
organizations can unlock the full potential of their GPU infrastructure, driving faster AI development and 
improved ROI. 

 

Call to Action 

As AI workloads scale and GPU supply remain constrained, underutilized infrastructure has become a 
hidden tax on innovation. The ACB turns this inefficiency into a strategic advantage, unlocking higher 
throughput, lower cost per model, and faster iteration across AI pipelines. 

Now is the time for AI leaders to act: Integrate ACB into your existing stack, benchmark its impact, and 
reclaim performance from hardware you already own. Organizations that optimize GPU utilization today 
will be the ones scaling AI tomorrow—faster, leaner, and ahead of the curve. 
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Appendix A: System Compatibility & Integration Scenarios 

To ensure successful deployment of the ACB, this appendix outlines its current system compatibility and 
highlights advanced integration scenarios. The ACB middleware is designed to be lightweight and flexible, with 
minimal infrastructure overhead and no required changes to model code. 

 

A1 – Supported Environments 

Component Compatibility 

GPU Drivers NVIDIA CUDA-compatible (v11.x–12.x); tested with CUDA 11.8+ and driver 525+ 

Operating Systems Ubuntu 20.04 / 22.04  

AI Frameworks 
PyTorch (2.1.2+): native hooks used to detect GPU usage, TensorFlow (2.15+): limited 
support in manual-var mode.  

Hardware Support 
NVIDIA A100, H100, L40S, A10; supports MIG-enabled and non-MIG GPUs  
(MIG support coming soon) 

Inference Runtimes Compatible with vLLM, 

Containerization Docker supported; no dependency on Kubernetes 

Cluster Integration Single node supported; multi-node support limited until Q3/2025 

Licensing / 
Deployment 

Python package; license validation via API 

 

A2: Integration Notes 

• Model Transparency: ACB does not require any changes to user models or training scripts if PyTorch 

is used as the AI framework. It observes GPU activity through backend runtime instrumentation via 

framework profiling APIs. 

• Memory Handling: ACB temporarily swaps entire models in and out of GPU memory based on runtime 

activity, allowing for oversubscription scenarios where all models combined exceed total memory 

available. 

• Execution Context: The broker can wrap a model training or inference job and dynamically release the 

GPU when idle phases (e.g., CPU preprocessing) are detected. Full memory access is granted during 

active GPU use. 

 

A3: Advanced Compatibility Scenarios 

Scenario 1: ACB + NVIDIA MIG (Driver-Level Partitioning) 

When deployed on MIG-enabled GPUs (e.g., A100 or H100), ACB complements MIG by dynamically assigning 
MIG instances to jobs in real time. While MIG creates isolated GPU slices (e.g., 10 GB or 20 GB partitions), ACB 
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ensures these slices are only bound to jobs during their active GPU phases. This allows multiple GPU-bound 
jobs to co-exist with minimal memory conflict or underutilization (MIG support coming soon). 

Scenario 2: ACB + Triton Inference Server / vLLM (Application Layer) 

Inference-serving frameworks like Triton and vLLM typically launch persistent GPU-bound workers. When 
integrated with ACB, inference models are loaded on-demand into GPU memory and unloaded post-inference, 
enabling high-throughput LLM serving even with limited memory -ideal for bursty or multi-model 
deployment scenarios (currently only vLLM support). 

Scenario 3: ACB + NVIDIA MIG + vLLM (Full Stack Efficiency) 

Combining all three technologies creates a powerful tiered system: 

• MIG partitions a single GPU into multiple isolated slices—ideal when models don’t need the full GPU., 

• ACB operates within each MIG slice, dynamically orchestrating multiple LLM models. 

• vLLM enables fast, efficient LLM inference. 

This architecture supports dense multi-model hosting: small and mid-sized models can share a MIG slice, 
improving utilization without contention. 

  



Fujitsu ACB Technical White Paper 

FUJITSU-PUBLIC                                                                14 of 16   © Fujitsu July 

2025 

Appendix B – Competitive Differentiation: ACB’s True Innovation in GPU Efficiency 

We assessed Fujitsu’s ACB against three leading platforms—Run:ai, Exostellar.ai, and Slurm—to validate the 
comparative feature matrix and highlight where ACB stands out. 

 

Feature Verification Table 

Feature ACB Run:ai Exostellar.ai Slurm 

Runtime-Aware 
Scheduling 

Yes  
No: schedules at 
container/job 
granularity time slicing 

No: monitors and 
dynamically adjust 
resource allocations  

No: static allocation per job, 
no intra-job rescheduling 

Memory 
Partitioning 

Yes – gives full 
GPU memory at 
each active phase  

Yes – fractions and 
automated MIG 
partitions  

Yes – Software-Defined 
GPU virtualization  

Yes – via MIG and software 
“sharding”  

Memory 
Oversubscription 

Yes – via time-
based trading of 
full GPU memory  

No – avoids memory 
oversubscription per 
GPU for safety 

Yes – supports safe 
over-commit with 
virtual devices  

No – not supported; shards 
are static, MIG is partitioned 

Cluster-Level 
Orchestration 

Planned;  
Yes – full Kubernetes 
integration  

Partial – integrations 
via K8s; includes 
migration and scaling  

Yes – platform in HPC 
clusters; well-defined queue 
and scheduling 

Plug-and-Play 
Integration 

Lightweight – 
middleware, no 
code changes  

Moderate – requires 
K8s + Run:ai 
deployment 

Moderate – system-
level driver/intel install 
on each node 

Heavy – full HPC scheduler 
setup 

Key Differentiator 
Task-level GPU 
capture 

Dynamic GPU fraction 

and resource quota 

management. 

Software GPU 
virtualization + 
oversubscription 
commit 

Batch scheduling with high 
reliability & scale 

Competitive Highlights 

ACB 

• Dynamically assigns full GPU memory and compute only when a task enters GPU phases (e.g., 

forward/backpropagation), identified by runtime behavior. It minimizes hardware contention 

throughout a job’s lifetime. 

• Enables memory oversubscription by treating GPU memory as fully reusable across tasks—users 

demonstrated handling 150 GB of AI processing on 40 GB GPUs via time-based swapping. 

 

Run:ai 

• GPU fraction and Dynamic MIG feature dynamically divide GPU memory at the time when a job is 
submitted. 

• Offers sophisticated resource quota allocation based on Projects and Departments, allowing fair 
scheduling and temporal over-quota. 

• Focusing on Kubernetes cluster environment and offering tight integration with it. 
• It does not handle memory oversubscription -- it does not allow concurrently running two jobs each 

demanding entire GPU memory (see here). 
 

https://run-ai-docs.nvidia.com/saas/platform-management/runai-scheduler/scheduling/concepts-and-principles?utm_source=chatgpt.com
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Exostellar.ai 

• Employs Software-Defined GPU (SDG) virtualization: tasks get isolated virtual GPUs with configurable 

memory/compute. 

• Allows safe memory oversubscription using paging and virtual memory swapping when tasks don’t 

simultaneously use peak resources. 

• Monitors and dynamically adjusts resource use via telemetry; includes Kubernetes integration and 

clustering tools for migration and autoscaling (see here). 

Slurm 

• The de facto HPC scheduler, offering stable, policy-driven job queueing and MIG/shard support for 

partitioned GPU use. 

• Introduced software GPU sharding (v22.05), allowing fractional job allocation—but without 

memory fencing; users must ensure safe co-scheduling. 

• Lacks runtime GPU reallocation; jobs keep GPU allocation throughout their lifespan. 

  

https://www.exostellar.ai/blog
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Appendix C: Additional Information 

 

Figure 5: Top: Two GPUs running Alphafold2 without ACB; bottom: a single GPU running the same two Alphafold2 jobs on a single GPU. Left side: GPU 
activity, right side: output of the Alphafold2 inference. 

 

Figure 6: Architecture of the ACB multi-server set up: The main GPU assigner is located at the control node and interacts with GPU monitoring agents on 
each executor node to control the global GPU resource pool. 
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